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We show that the cycloidal magnetic order of a multiferroic can arise in the absence of spin and lattice
anisotropies, e.g., in a cubic material, and this explains the occurrence of such a state in CoCr2O4. We discuss
the case when this order coexists with ferromagnetism in a so-called “conical cycloid” state and show that a
direct transition to this state from the ferromagnet is necessarily first order. On quite general grounds, the
reversal of the direction of the uniform magnetization in this state can lead to the reversal of the electric
polarization as well without the need to invoke “toroidal moment” as the order parameter.
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I. INTRODUCTION

Ferromagnetism and ferroelectricity are two of the most
well-known and technologically relevant types of long-range
ordering that can occur in solids. It is therefore of paramount
interest and importance that in a class of ternary oxides,
known as “multiferroics,” both types of order seem to coex-
ist with the possibility of interplay between long-range mag-
netism and long-range electric polarization.1–4 The class of
multiferroics with strong magnetoelectric effects often dis-
play the coexistence of a spatially modulated magnetic order,
called “cycloidal” order, and uniform polarization �P�, which
is induced by the broken inversion symmetry due to the
modulation of the magnetization.5,6 Since P is inherently of
magnetic origin, unusual magnetoelectric effects, as dis-
played by the ability to tune the polarization by a magnetic
field which acts on the cycloidal order parameter, are pos-
sible, opening up many applications.2,7–15 Among this excit-
ing class of materials, the cubic spinel oxide CoCr2O4 is
even more unusual since it displays not only a nonzero P and
a spatially modulated magnetic order but also a uniform
magnetization15 �M� in a so-called “conical cycloid” state
�see below�. The uniform component of M provides an extra
handle2 with which to tune P, as has been recently
demonstrated.15 The low value of the required tuning mag-
netic field �.5 T makes this material even more experimen-
tally appealing.

The ability to tune P by tuning the uniform part of M
poses a theoretical puzzle since, in existing theories, the uni-
form piece of M should not influence the polarization at
all.5,6,16,17 This has lead to the introduction of the “toroidal
moment,” T=P�M, as the real order parameter character-
izing the conical cycloid �CC� state of CoCr2O4.15 In this
paper, we explain this unique phenomenon and the other in-
teresting aspects of the physics of the conical cycloid state
by developing a phenomenological Ginzburg-Landau �GL�
theory. Additionally, the rotationally invariant form of the
theory proves that both the ordinary and the conical cycloidal
orders, with the resulting multiferroicity, are possible even in
systems without easy-plane spin and easy axis lattice
anisotropies. This is important since earlier models2,5,18 of
the cycloidal state depend crucially on such anisotropies.

However, such anisotropic models cannot explain the pres-
ence of the cycloidal state in cubic systems such as CoCr2O4,
where such phases are also observed despite the fact that
their cubic symmetry forbids such easy-plane and easy axis
anisotropies.

CoCr2O4, with the lattice structure of a cubic spinel, en-
ters into a state with a uniform magnetization at a tempera-
ture Tm=93 K. Microscopically, the magnetization is of fer-
rimagnetic origin,15 and in what follows we will only
consider the ferromagnetic �FM� component, M, of the mag-
netization of a ferrimagnet. At a lower critical temperature,
Tc=26 K, the system develops a special helical modulation
of the magnetization in a plane transverse to the large uni-
form component. Such a state can be described by an order
parameter,

Mh = m1ê1 cos�q · r� + m2ê2 sin�q · r� + m3ê3 + h . h . ,

�1�

where �êi� forms an orthonormal triad, and h.h. denotes
“higher harmonics” such as terms proportional to sines and
cosines of �2n+1�q ·r with integer n. When the pitch vector,
q, is normal to the plane of the rotating components, the
rotating components form a conventional helix.19 For m3=0
such a state, which we call an “ordinary helix” state, is ob-
served in many rare-earth metals,20 e.g., MnSi �Refs. 21 and
22� and FeGe.23 We call a helix state with m3�0, which is
observed in some heavy rare-earth metals,20 a “conical helix”
state because the tip of the magnetization falls on the edge of
a cone. A more complicated modulation arises when q lies in
the plane of the rotating components. For m3=0, we call
such a state an “ordinary cycloid” �OC� state because the
profile of the magnetization resembles the shape of a cycloid.
The state with m3�0 is called a “conical cycloid” state. It is
easy to see that the helical, but not the cycloidal, modulation
preserves a residual symmetry under translations and suitable
simultaneous rotations about the pitch vector.

Since M and P, respectively, break time reversal and spa-
tial inversion symmetry, the leading P-dependent piece in a
GL Hamiltonian density, hP, for a centrosymmetric, time-
reversal invariant system with cubic symmetry is5
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hP = P2/2� + �P · M � � � M , �2�

where ��0 and � are coupling constants. We assume that P
is a slave of M in the sense that a nonzero P only occurs due
to the spontaneous development of a magnetic state with a
nonzero M���M, which then, through the linear coupling
to P in Eq. �2�, induces a nonzero P. For an order-parameter
ansatz given by Eq. �1�, the macroscopic polarization, P, is
given by minimizing Hamiltonian density �2� over P, P
=��m1m2�ê3�q�. So P is normal to both q and the axis of
rotation, ê3. Note that in a conventional spin-density wave
state �m1 or m2=0�, as in the helix states, P is zero. However,
for a cycloid state, q� ê3 so there is a nonzero P. Note that
P is entirely due to the cycloidal components m1 and m2, and
is independent of the uniform magnetization m3. Thus, while
it is conceivable that magnetic fields strong enough to “flop”
the spins and the axis of rotation of the cycloidal components
will alter P,5–8 no explanation of how tuning the uniform
component of M can affect the induced polarization has been
offered. We will do so later in this paper.

The paper is organized as follows: Sec. II lays out the
Ginzburg-Landau Hamiltonian and the parameter regions
which exhibits the cycloidal phase. Sections III and V are
devoted to the phase diagrams of ordinary cycloidal state and
conical cycloidal state, respectively. In Sec. V, we explain
why the reversal of the direction of the uniform magnetiza-
tion in the conical cycloidal state can lead to the reversal of
electric polarization. Section VI consists of conclusions.

II. GINZBURG-LANDAU HAMILTONIAN

We consider a Hamiltonian that is completely invariant
under simultaneous rotations of positions and magnetization.
This guarantees that any phase that can occur in our model is
necessarily allowed in a crystal of any symmetry. The full
Hamiltonian is given by H=��hM+hP�dr	�hdr. Using P
=−��M���M to eliminate P, we can write the total
Hamiltonian density h entirely in terms of M,

h = tM2 + uM4 + K0�� · M�2 + K1�� � M�2 + K2M2�� · M�2

+ K3�M · � � M�2 + K4
M � � � M
2 + DL
��� · M�
2

+ DT
��� � M�
2, �3�

where we have u, DL,T�0 for stability. In Eq. �3�, where the
Landau expansion of the free energy is truncated at the
fourth order, the usual gradient-squared term, c
�M
2, is
omitted since 
�M
2= �� ·M�2+ 
��M
2 plus an unimportant
surface term which can be neglected. Notice that, for K0
=K1 and K2=K3=K4, h is rotationally invariant in the spin
space alone so the Ki’s themselves are not proportional to the
spin-orbit coupling constant �e.g., via the above identity,
K0 , K1�c�. However, the difference among the Ki’s should
be small due to the smallness of the spin-orbit coupling. The
effects of the competing magnetic interactions, which are
present in the multiferroics and are responsible for the spatial
modulation of M,2,5,17,18 are embodied in K0 , K1, which can
be negative leading to a spatially modulated order parameter.
For decoupled spin and coordinate spaces �Ki’s equal�, the
energies of the helical and the cycloidal modulations of the

spins are identical. In a system where the spin anisotropy
constrains the spins to lie on a plane, and the lattice aniso-
tropy forces q to be also on that plane, the energy of the
cycloidal modulation can be lower than that of the helical
modulation.5,18 Such anisotropies have been implicitly taken
as the driving force behind the cycloidal order by Mostovoy5

and Katsura et al.18 For cubic crystals, however, no such
anisotropy exists among the principal directions. We argue
below that, in this case, the magnetoelectric couplings them-
selves, leading to the difference among the Ki’s, can lower
the energy of the cycloidal state than that of any other state
with an arbitrary angle between q and the plane of the mag-
netization.

Rather than exploring the complete parameter space of
this model, we limit ourselves to two different parameter
regions, which exhibit all the phases described above: region
I: K0,1�0, Ki�1 small, t�0, and region II: t�0, K3�0,
K1�0, and K2=K4=0.

We have checked that our results are robust against allow-
ing small nonzero values of the various Ki’s that we take to
be zero. In that sense our results, in particular the topology of
the phase diagrams shown in Figs. 1�a� and 2�a� for regions
I and II, respectively, and the orders of the various phase
transitions that we predict, are generic. As usual, our theo-
retical phase diagrams can be related to experimental ones by
noting that all of the phenomenological parameters
�t ,Ki ,DL,T ,u� in our model should depend on experimental
parameters such as, e.g., temperature �T�. Thus, an experi-
ment in which, e.g., T is varied with all other parameters held
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FIG. 1. �Color online� �a� Phase diagram in region I for the
ordinary cycloid state. Solid �blue� lines represent the second-order
phase transitions. Dotted �green� line indicates the first-order tran-
sition to the helix state. The dotted �red� arrow represents one pos-
sible schematic locus of the experimental points obtained by vary-
ing T. r0	�1+3DT /DL� /6. �b� The sequence of phases with
decreasing T along the locus shown.
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FIG. 2. �Color online� �a� Phase diagram in region II for the
conical cycloid state. Solid �blue� lines are the boundaries between
different phases. The dotted �red� arrows represent possible paths
for transition to the CC state via continuous transitions. �b� The
succession of the phases with decreasing T. The �green� arrow rep-
resents a direct first-order transition between the FM and the CC
states.
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fixed will map out a locus of points through our theoretical
phase diagrams. In Landau theories, t is expected to vary
from large positive values, corresponding to disordered
phases with M�r�=0 at high T, to smaller values at which
M�r��0 becomes possible. In order to access the conical
cycloid state, we must also allow K0�T� and K1�T� to change
sign as T is decreased.

For the most part we will work in mean-field theory,
which is simply finding a magnetization configuration M�r�
that minimizes the Hamiltonian �3�. Clearly, the task of find-
ing the global minimum is a formidable one. Instead, we
restrict ourselves to ansätze of the form:

M = m1ê1 cos�q · r� + m2ê2 sin�q · r� + M0, �4�

where the spatially constant vector M0 is allowed to point in
any direction. �Given the global rotation invariance under
simultaneous rotations of magnetization and space, an infin-
ity of other solutions trivially related to Eq. �4� by such ro-
tations and with exactly the same energy also exist, of
course.� In the special case of q along x direction �or, equiva-
lently, anywhere in the x−y plane�, this is a cycloid state
with a uniform background magnetization M0
= �M01,M02,M03�. When q is along z direction, it is a helix
state. Inserting this ansatz �4� into the Hamiltonian �3� and
integrating over the volume V of the system, we can obtain
the energy of the system. Through the minimization of the
energy, we find that the conical cycloid state is the only state
with a nonzero M0 when K3�K4. In addition, the optimal
direction for q is always either in the �x−y� plane or or-
thogonal to it. Putting these facts together means that all of
the minimum-energy configurations are of the form �1�. Fur-
thermore, when q lies in the �x−y� plane, we can always use
the global rotation invariance of our model to rotate q lying
along the x axis, and will henceforth do so.

III. ORDINARY CYCLOID STATE

In region I, the dominant terms in the Hamiltonian involv-
ing the uniform component m3 are tm3

2+um3
4; therefore the

lowest energy states have m3=0. Small negative Ki�1 clearly
cannot change this fact. The energy for the OC state is ob-
tained by inserting Eq. �1� with m3=0 into the Hamiltonian,

E/V = �L�q�m1
2 + �T�q�m2

2 + u	�m1
2,m2

2� , �5�

where �L�q�= �t+K0q2+DLq4� /2, �T�q�= �t+K1q2+DTq4� /2,
and 	�m1

2 ,m2
2�=3�m1

4+m2
4� /8+m1

2m2
2 /4. In writing this, we

have neglected the higher harmonics in Eq. �1�, whose am-
plitude vanishes much faster �specifically, as fast or faster
than 
mi
3� than the magnitude of the order parameter itself,
and thus have negligible effects on the phase boundaries. For
large positive t, all the terms in this energy are positive and,
hence, the lowest energy state is m1=m2=0; i.e., the para-
magnet. As T decreases, t becomes smaller and the first
phase transition that will occur depends on whether the mini-
mum over q of �L�q� or �T�q� becomes negative first. For
r	K1 /K0��DL /DT, �L�q� becomes negative first at tOLS
=K0

2 /4DL and m1 starts to be nonzero. This boundary be-
tween paramagnet and the ordinary longitudinal spin-density

wave �OLS� phase �m2=m3=0 , m1�0� is the horizontal
line in the phase diagram �Fig. 1�a�� in the �r , t� plane for
fixed negative K0 and all Ki�1=0.

The OLS phase will, as we continue lowering t, eventu-
ally become unstable to a nonzero m2; this is the OC state.
By minimizing the energy �Eq. �5�� in the OLS phase, we
find q2=qL,min

2 =−K0 /2DL and m1
2=2�tOLS− t� /3u. Inserting

these into Eq. �5� we find that the coefficient of m2
2 becomes

negative below tLOC= tOLS�3r− �1+3DT /DL� /2�. This value
tLOC of t therefore defines the locus of a continuous OLS-OC
phase transition, and is the nonhorizontal straight line in the
r− t plane shown in Fig. 1�a�.

For r��DL

DT
, �T becomes nonzero first, which seems to

imply that one enters the ordinary transverse spin-density
wave �OTS� phase �m1=m3=0, m2�0� first for large r.
However, it is not true because the OTS phase always has
higher energy than the ordinary helical �OH� phase. The en-
ergy for the ordinary helix state is

E/V = �T�m1
2 + m2

2� + 	�m1
2,m2

2� . �6�

The minimization of the energy over the direction of
�m1 ,m2� vector yields 
m1
= 
m2
=mH /�2, that is, a circular
helix. Further minimization over mH and q gives the energy
EOH of the ordinary helix state EOH /V=−�tOH− t�2 /4u
for t� tOH, where tOH=r2DLtOLS /DT. The energy for the OTS
state is EOTS /V=−�tOH− t�2 /6u, which is obtained from Eq.
�5� by setting m1=0 and q2=qT,min

2 	−
K1

2DT
, and then minimiz-

ing over m2. EOTS is clearly higher than EOH. Hence, the
helical state is always favored over the OTS state throughout
region I of the phase diagram. Note that tOH defines the
boundary for the second-order transition from the paramag-
net to the OH state.

There is also a direct first-order phase transition between
the OH and the OLS states along the line where EOH=EOLS.
Here EOLS /V=−�tOLS− t�2 /6u is the energy for OLS state ob-
tained from Eq. �5�. This equality yields the first-order phase
boundary tOLH= ��3 /2tOH− tOLS� / ��3 /2−1� between the OH
and the OLS states. The line for the OLS-OC transition al-
ways intersects the first-order OLS-OH phase boundary be-
fore crossing the paramagnet-OLS boundary. This therefore
always yields the topology shown in Fig. 1�a�.

A typical experimental locus through this phase diagram,
namely, one in which t decreases as temperature T does with
r constant, is shown in Fig. 1�a�. The sequence of phases that
results is illustrated in Fig. 1�b�. We see that the paramagnet
to ordinary cycloid phase transition is always preempted by a
paramagnet to OLS phase transition, and the cycloid state is
always elliptical. Both of these predictions are borne out by
recent experiments on TbMnO3.13,14 On the other hand, a
direct transition to the circular helix state is predicted by our
theory and has indeed been observed experimentally.21,22

All of the above statements are based on mean-field
theory, that is, theory without considering the fluctuations.
Going beyond mean-field theory, very general arguments due
to Brazovskii24 imply that, in rotation invariant models, any
direct transition from a homogeneous state �paramagnet� to a
translationally ordered one �OLS and OH� must be driven
first order by fluctuations. Consideration of topological de-
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fects and orientational order25–27 supports this conclusion but
raises the additional possibility that direct transition between
the homogeneous and the translationally ordered phases
could split into two with an intermediate orientationally or-
dered phase, analogous to the two-dimensional �2D�
“hexatic” phase.28 In the present context, this implies that
both the paramagnet to OLS and OH phase transitions are
either driven first order by fluctuations or split into two tran-
sitions with an intermediate orientationally ordered phase.
Crystal symmetry-breaking fields neglected in our model
could invalidate this conclusion, if strong enough.

IV. CONICAL CYCLOID STATE

In region II, we can show that CC state of the form M
= �m1 cos�qx� ,m2 sin�qx� ,m3� is the lowest energy state
among all the possible states with arbitrary mutual angles
between the uniform magnetization, q, and the cycloid plane.
The energy E for this state takes the form

E/V = �t + K0q2 + DLq4 + 2um3
2�m1

2/2 + �t + K1q2 + DTq4

+ 2um3
2 + K3q2m3

2�m2
2/2 + u	�m1

2,m2
2� + tm3

2 + um3
4,

�7�

where we have again neglected the higher harmonics in Eq.
�1�. In this region, the h.h. terms do not vanish as the conical
longitudinal spin-density wave �CLS� �m2=0 , m1,3�0� or
conical transverse spin-density wave �CTS� �m1=0 , m2,3
�0� to FM transition in Fig. 2 is approached. However, we
have verified that amplitudes of the h.h. terms are only a very
small fraction of the cycloidal components m1 and m2 �not of
the uniform component m3�; therefore their neglect below
�but close to� the lower cycloidal transition temperature of 26
K is justified. They have little or no quantitative effect on our
phase diagram or the orders of the transition.

Since t�0, we can minimize Eq. �7� over m3 with m1

=m2=0 and find a FM state with m3=�−t /2u. For large posi-
tive K0 and K1, this ferromagnetic state is clearly stable
against the development of nonzero m1 and m2. It also
clearly becomes unstable against the development of a non-
zero m1 if K0 is lowered to negative values because then the
coefficient �K0q2+DLq4� of m1

2 becomes negative for suffi-
ciently small q. This instability �which is clearly into the
CLS state� will occur at K0=0, at a wave vector q satisfying
qL,min

2 =−K0 /2DL. Note however that now, because K0 is be-
ing varied through zero, this wave vector will now vanish as
the transition is approached from below. The order parameter
m1

2=K0
2 /2uDL also vanishes as this transition is approached.

Thus, this transition is, like the 
-incommensurate transition
in quartz and berlinite,29 simultaneously a nucleation transi-
tion �q vanishes� and an instability transition �order param-
eter vanishes�. Indeed, this transition and the FM→CTS
transition, which is of the same type and will be discussed
below, are examples of transitions that exhibit such a dual
character in a model without terms linear in the gradient
operator.

We can find the loci of instability between the CLS phase
and the CC state by calculating the coefficient of m2

2 in Eq.
�7� in the CLS phase and finding where it becomes negative.

The minimization of the energy Eq. �7� over q, m3, and
m1 yields q2=−K0 /2DL, m3

2=−�t+K0
2 /2DL� /2u, and m1

2

=K0
2 /2uDL. Inserting these expressions into Eq. �7� and tak-

ing the coefficient of m2
2 to be zero, we find the CLS to CC

phase boundary as

K1 =
K0

2
�DT

DL
− 1 +

K0K3

2uDL

 +

tK3

2u
. �8�

Similar analysis of the sequence of the phase transition,
FM→CTS→CC, yields the phase diagram on the K0−K1
plane given in Fig. 2�a�. The phase boundary between FM
and CTS is given by K1= tK3 /2u. The phase boundary be-
tween the CTS and the CC phase at small K0 is K1
=2K0 / �DL /DT−1�, which is also shown in Fig. 2�a�.

Figure 2 shows that it is not possible to go from the FM to
the CC state via a continuous transition except at a single
special point. Generic paths such as the diagonal dashed
lines in Fig. 2�a� must go through either the CLS or the CTS
state so two transitions are required to reach the CC state,
which, additionally, must be elliptical. Hence the only way
there can be a direct transition from the FM state to the CC
state is via a first-order phase transition, which is not ad-
dressed by our theory. This prediction is borne out by experi-
ments of CoCr2O4, where the direct FM to CC transition is
indeed first order.15

V. MAGNETIC REVERSAL OF THE ELECTRIC
POLARIZATION

The polarization P=��m1m2ŷ in the CC state is in the xy
plane, normal to ê3 and q. It is independent of the uniform
magnetization, m3. Experimentally,15 the sample is cooled
through Tc in the presence of a small electric field, E=E0ŷ,
and a small magnetic field, H=H0ẑ. The direction of the
pitch vector, x̂, or, equivalently, the axis of rotation, ẑ, are set
by the direction of P �E�, which determines the “helicity” of
the cycloid.7 It is found, at first, that P is uniquely deter-
mined by E alone, independent of the initial direction of H,
as expected. However, once P and m3 have set in, changing
H0 to −H0 not only reverses the direction of m3 but also,
quite unexpectedly, reverses the direction of P as well. In the
literature,2,15 this has lead to the definition of the toroidal
moment, T=P�M, as the order parameter.

It is clear that the experimental system is in the conical
cycloid state, where m3 , q, and P are always in mutually
orthogonal directions.15 Further, as expected for this state,
the directions of m3 and P are uniquely determined by the
small cooling fields, H and E, respectively, which add terms
to the Hamiltonian that split the degeneracy between the
minima corresponding to the different directions. Now as-
sume that the direction of H is reversed, H0→−H0, reversing
the direction of m3 once it has well developed. There are two
ways the uniform magnetization can reverse its direction.
First, m3 may continue to remain along the z axis and its
magnitude may pass through zero to become −m3 for
H=−H0ẑ. If this is the case, P will remain fixed in the direc-
tion ŷ since the mutual orthogonality of m3 , q, and P can
always be maintained, and there is no direct coupling be-
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tween m3 and P. However, since m3 is already well devel-
oped and large �Tm=93 K�, due to the magnetic exchange
energy cost, it may be energetically more favorable to leave
the magnitude of m3 unchanged and its direction may rotate
in space to −ẑ. If this is the case, then m3 must rotate staying
on the y−z plane since that way it always remains perpen-
dicular to q, whose direction fluctuations cost the crystalline
anisotropy energy. It is then clear �see Fig. 3� that the cycloid
plane itself, which is always perpendicular to m3 to maintain
the lowest energy configuration, must rotate about x̂ by a
total angle �. It follows that P, always on the cycloid plane,
reverses its direction to −ŷ. This way, even though there is no
dynamical coupling between m3 and P, the latter can also
rotate by an angle � as a result of the former reversing its

direction in space. Based on this, we predict that, at some
intermediate H�−H�ẑ, where H��H0, P points in the di-
rection −ẑ, which can be experimentally tested.

VI. CONCLUSIONS

To conclude, we have shown that the magnetic cycloidal
orders and the resulting multiferroicity can naturally arise
due to the magnetoelectric couplings even in rotationally in-
variant systems, or in cubic crystals. This explains such or-
ders in CoCr2O4, which lack easy-plane anisotropies, and are
hence outside the realm of the previous theoretical studies on
multiferroics. We also predict that a second-order transition
from the ferromagnet to the conical cycloid state can only
occur through an intervening conical longitudinal or trans-
verse spin-density wave state with the ultimate cycloidal
state being elliptical. Such a direct transition, then, must be
first order. An important feature of our Ginzburg-Landau
theory is that we do not need to invoke an arbitrary �and ad
hoc� toroidal moment to explain the interplay between the
magnetization and the polarization—the behavior which has
been attributed to the toroidal moment arises naturally in our
theory.
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FIG. 3. �Color online� The reversal of the polarization �P� by the
reversal of the magnetization �m3�. �a� If m3 rotates to −m3, remain-
ing perpendicular to q, the cycloidal �xy� plane must rotate accord-
ingly to always remain transverse to m3, which is the lowest energy
configuration. Since P is in the cycloidal plane, it will rotate by a
total angle �. �b� An intermediate stage when m3 has rotated by an
angle �

2 and points in the ŷ direction. At this stage, P points in the
−ẑ direction.
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